
M AG AZ INE

In this Issue:

News

Back 2 BASICs

Sprite Designer Pt. 3

Membership of QUANTA, the independent QL user group, is by annual subscription. The
Membership Secretary can supply full details. Copies of the association ’s constitution & annual
accounts are available from the Secretary.

QUANTA Committee - 2015/2016

Chairman: Sarah D. Gilpin 181, Urmston Lane, Stretford, Manchester. M32 9EH

Email: chairman@quanta.org.uk Tel: 0161 865 2872

Secretary: Alison Southern 40, Distaff Road, Poynton, Cheshire. SK12 1HN
Email: secretary@quanta.org.uk Tel: 01625 850067

Treasurer & Membership Secretary: John Gilpin 181, Urmston Lane, Stretford,
Manchester. M32 9EH

Email: treasurer@quanta.org.uk
Email: membership@quanta.org.uk Tel: 0161 865 2872

Magazine Editor: Lee Privett. 25 Mucking Hall Road, Barling Magna, Southend on Sea,
Essex. SS3 0NH.

Email: editor@quanta.org.uk Mobile: 07985 513 234

Librarian: David Buckley 136, Denton Lane, Chadderton, Oldham. OL9 8PS
Email: librarian@quanta.org.uk Tel: 0161 622 1600

Helpline & News Editor: Dilwyn Jones 22 Erw Las, Coetmor New Road, Bethesda,
Gwynedd. LL57 3NN

Email: helpline@quanta.org.uk
Email: news@quanta.org.uk Tel: 01248 601599

Web Administrator & Web Master: Keith Dunbar 44, Dalton Avenue, Stretford,
Manchester. M32 9TP

Email: webadmin@quanta.org.uk Mobile: 07789 483 800

I.C.M.: Dave Park, 1406 Dana Court, Round Rock, TX USA 78664
 Email: dave@quanta.org.uk Tel: (512) 529 7863

Back Issues Requests: Email: backissues@quanta.org.uk

QUANTA reserves the right to publish, reject or edit any material submitted. The opinions expressed

are solely those of the contributors. Member’s private small ads - free (up to 50 words). Non-

members private small ads (and members after 50 words) 50p per 10 words or part thereof. Terms

strictly paid up-front with order. Receipt if requested. All copyrights and trademarks are hereby

acknowledged.

OUANTA
I N F O R M A T I O N O N T H E A S S O C I A T I O N

mailto:chairman@quanta.org.uk?subject=Dear%20Chairman
mailto:secretary@quanta.org.uk?subject=Dear%20Secretary,%20I%20have%20a%20query!
mailto:treasurer@quanta.org.uk?subject=Financial%20Query
mailto:membership@quanta.org.uk?subject=Hello,%20I%20have%20a%20membership%20query!
mailto:editor@quanta.org.uk?subject=I%20would%20like%20to%20comment,%20submit%20an%20article
mailto:librarian@quanta.org.uk?subject=A%20Libray%20Query
mailto:helpline@quanta.org.uk?subject=Helpline%20Item%20for%20the%20QUANTA%20Magazine
mailto:news@quanta.org.uk?subject=News%20Item%20for%20the%20QUANTA%20Magazine
mailto:webadmin@quanta.org.uk?subject=Web%20Query
mailto:dave@quanta.org.uk
mailto:backissues@quanta.org.uk?subject=Back%20Issue%20Request

CONTENTS

Editorial Lee Privett 4

QUANTA News Dilwyn Jones 5

Quo Vadis Design Advertisement 8

Gaming in S*BASIC(1) John Southern 15

RWAP Software Advertisement 16

Jochen Merz Software Advertisement 22

Small Ads Advertisement 32

Comment George Gwilt 39

RWAP Membranes Advertisement 40

Nemqlug Notices Sarah Gilpin 41

Sprite Designer Pt. 3 Lee Privett 42

Copy Date (For Next Issue) 51

QL Forum Advertisement 52

Visi t our website at : www.QUANTA.org.uk

‘Like’ us on Facebook at :

www.Facebook.com/QUANTA.org

http://www.QUANTA.org.uk
http://www.Facebook.com/QUANTA.org

Page 4 of 52

H ello fellow QLer’s, welcome to

QUANTA 2016 proper and to this

years makeover. You will see we are attempting to revitalise some

basic QL programming with our readership and spur you all on to

tinker, experiment and play with the examples we put forward.

By all means please submit anything you wish to, we are ALWAYS

needing articles for the magazine.

For those of you who partake of frequent cinema going, may have

recently seen PIXELS. This Adam Sandler film is a take on the

Aliens invading Earth genre where the aliens took our early

computer based games as a declaration of war and also the

method by which to fight battles.

It’s a fun light-hearted easy going film but it’s the graphics that

interested me. They have used very high quality variation of

pixelated images in 3D reminiscent of original arcade games way

back when the QL was in its infancy. Check out the trailer on

Youtube for an example. Pacman is of particular interest, to say

anymore would invoke SPOILERS so I will leave it there.

Enjoy the magazine, comments as usual through the normal

channels, page 2 for details.

The Editor

 Page 5 of 52

I f you have QL-related news items

that you’d like us to include on this

page, please get in touch with News Editor - Dilwyn Jones at

news@quanta.org.uk

Between mid-December and mid-January, some battery

replacements for these popular QL expansions were made

available through SellMyRetro.com by Paul Veltjens in Germany,

who builds and supplies the QL-SD hardware.

This is a plug in replacement for the red SAFT 40 LF 220 3V

Lithium Battery (40LF220) that used to backup the Goldcard clock.

It has a holder for a CR2032 lithium battery (which is not included

with the package). The battery holder costs just £5.00 plus cost of

shipping the device. It is not yet known when further batches of this

handy little device will be made available.

The Gold/Super Gold Card battery holders (picture from

SellMyRetro.com)

mailto:news@quanta.org.uk

Page 6 of 52

David Westbury has issued the latest update to his graphics

conversion software. The latest version of the functions for

converting JPEG and GIF graphics to QL PIC files can now also

handle the PNG graphics file formats.

Also included are utilities to extract file information from these

graphics file formats, along with a small utility to create wallpaper

format files (BGIMAGE in SMSQ terminology – essentially a PIC

file without the 10 byte preamble).

Being written as BASIC extension functions, these graphics

conversion utilities are easy to add to your programs, including

compiled BASIC programs.

The author says that having developed these extensions as

stand alone utilities for testing and development purposes, he

now intends to move on to update the original Photon software.

Download FJPEG, FGIF and FPNG free of charge from

http://www.dilwyn.me.uk/graphics/index.html

Scroll down the page to the entry for Photon, and this software

may be found just under that.

Norman Dunbar writes:

After many months of the odd hour grabbed here and there,

between work, driving, home life and so forth - did I mention

Christmas, New Year and a holiday to boot - the latest somewhat

exciting issue of the Assembly Language eMagazine is now

available for download.

http://www.dilwyn.me.uk/graphics/index.html

 Page 7 of 52

Point your browsers at

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/

Issue_003/Assembly_Language_003.pdf

(or wget

http://qdosmsq.dunbar-it.co.uk//downloads/AssemblyLanguage/

Issue_003/Assembly_Language_003.pdf)

and all will be revealed.

We have 29 pages of articles on sorting data, printing multiple

strings, a hex dump utility, all you never needed to know about

using jump tables in your code, and some information about

upcoming articles on the (new) 68020 instructions available in

QPC, but sadly, not in any of the other emulators - yet. Happy

reading and hopefully, the next issue will be out much quicker than

this one!

Screen Shot from the PDF

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_Language_003.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_Language_003.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_Language_003.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_003/Assembly_Language_003.pdf

 Page 8 of 52

 Page 9 of 52

Wolfgang Lenerz reports that he has released version 2.16 of the

Java-based QL emulator called SMSQmulator. Recent updates to

this system include:

 V2.14 a small bug fix which could arise when using beep with

openJDK.

 V2.15 various small bug fixes.

 V2.16 Small optimizations for speed, screen update interval is

selectable.

Download SMSQmulator free of charge from Wolfgang’s website at

http://www.wlenerz.com/SMSQmulator/

Versions for Java 6, 7 and 8 are available.

Martin Head has put together a document to aid in programming in

assembler, that he has cobbled together as he has been going

along learning to program TCP/IP on QDOS and SMSQ, from

documents by Richard Zidlicky and Jonathan Hudson, and from 'C'

code and information from the internet.

It lists and describes the IP system calls, and data structures used.

It also includes a list of 'C' error codes and descriptions to help you

when debugging machine code programs.

The document is unfinished, and still very much a work in

progress, so it's bit patchy. However he has made it available in

case anyone is interested in programming the IP drivers in

assembler, or to help if anyone wants to understand his Client/

Server program.

http://www.wlenerz.com/SMSQmulator/

Page 10 of 52

The document is intended to be printed as a booklet on A5 paper

and at the time of writing consisted of about 64 pages.

QL Forum members can access the document from

http://www.qlforum.co.uk/viewtopic.php?f=3&t=1403&start=30

As part of his efforts to further the use of Forth on QL systems,

Marcos Cruz has released software called SFERA, which stands

for SuperForth Extensions, Resources and Add-ons. It's a library

for SuperForth, a Forth-83 system for Sinclair QL, written by Gerry

Jackson and published by Digital Precision in 1985.

Marcos writes:

I started writing SFERA in order to make the development of some

new projects easier. Some of the main goals of SFERA are the

following:

 Many common words and tools found in modern standard

Forth systems.

 Improved support for source text files, e.g. nesting and

dependencies.

 Words for accessing some features of the SMSQ/E operating

system.

 Improved blocks handling, e.g. dependencies.

At the time of writing (15th January) SFERA was described as

“barely usable”, although it was a work in progress. Gerry Jackson

has put on GitHub the sources of his almost finished QL

SuperForth cross-compiler, which he started based on the original

SuperForth. Most of the sources are common, so it's most useful

to understand SuperForth.

http://www.qlforum.co.uk/viewtopic.php?f=3&t=1403&start=30

 Page 11 of 52

https://github.com/gerryjackson/QL-SuperForth

Probably also the sources of the "real" SuperForth, published by

Digital Precision in 1985, will be rescued from the original 5.25

floppy disks and published.

Gerry Jackson has also put on GitHub the sources of his game

Reversi, written in SuperForth. It's version 1.8, newer than the one

originally published in 1985.

https://github.com/gerryjackson/QL-Reversi

There are chess and go games written in Forth but as far as

Marcos knows there's no other Reversi in Forth. Perhaps some

day someone will convert it to standard Forth or other Forth

system. Probably the sources of version 1.2, which included many

comments, will be restored from the scanned manual.

Follow QL and Spectrum Forth developments on the Forth mail list

reported in the Dec 2015/Jan 2016 issue of QUANTA magazine

(page 13):

http://programandala.net/en.forth-sinclair.html/ (English)

http://programandala.net/es.forth-es.html/ (Spanish)

Derek Stewart has taken the scanned Fortran manual available

from my website and drastically reduced the file size down from

about 67MB to about 3.5MB. Both the original and reduced

versions are available to download free from my Languages page

at:

http://www.dilwyn.me.uk/language/index.html

https://github.com/gerryjackson/QL-SuperForth
https://github.com/gerryjackson/QL-Reversi
http://programandala.net/en.forth-sinclair.html/
http://programandala.net/es.forth-es.html/
http://www.dilwyn.me.uk/language/index.html

Page 12 of 52

Urs König’s website has moved from :

http://www.qlvsjaguar.homepage.bluewin.ch

to a new address :

http://www.sinclairql.net/.

Urs König writes:

30 years ago today (20th January) I bought my 1st personal Sinclair

QL Professional Computer. This changed my life in many ways. To

celebrate this I've spent an hour today to re-publish the QL

chronology webpage which has been taken down by the ISP

Swisscom last autumn due to end of service of their

xy.homepage.bluewin.ch hosting package.

http://sinclairql.net/chronology.html#MyFirstQL

Per Witte writes:

Someone on QL-forum requested the sources for the Dates toolkit

(as found on Toolkits page on Dilwyn’s site). I don't have compact

copies of the sources (they’re spread around and would require

actual work to make into a compilation), only the HTML-ised,

navigable versions off my old web site.

So with the license, meta info and the binaries, it all boils down to

about 40Kb. Dates001.zip is available from:

www.dilwyn.me.uk/tk/index.html

http://www.qlvsjaguar.homepage.bluewin.ch
http://www.sinclairql.net/
http://sinclairql.net/chronology.html#MyFirstQL
http://www.dilwyn.me.uk/tk/index.html

 Page 13 of 52

Download, Unzip somewhere and click on Index.html

David Westbury has managed to extract copies of Toolkit 2 from

two different Trump Card ROM versions. Both versions seem to be

level 2 filing system aware (although David has only been able to

test them with Miracle hard disk drive) and come with source

assembler. Both have been given suitable headers to allow them to

be loaded to RESPR area. Note that the header makes the toolkit

size just over 16K in length.

Download from http://www.dilwyn.me.uk/pe/index.html

Thanks to Urs König, I have been able to make available version 2

of the drivers for the short-lived SER-USB add-on produced by

Memory Lane Computing. Available to download from:

http://www.dilwyn.me.uk/misc/index.html

(This is a post from QL Forum by Thorsten Herbert)

Rochester brings Freescale 68K, Intel 80C186/88 MCUs back to

life. Rochester Electronics has worked out agreements with

Freescale and Intel to bring various members of the 68000 and

80C186/88 embedded microcontrollers back into production for

continued availability.

The company specializes in bringing back into production mature

and end-of-life semiconductors devices and will next year (2015)

add the Freescale and Intel processors to its current roster of such

end of life designs.

http://www.dilwyn.me.uk/pe/index.html
http://www.dilwyn.me.uk/misc/index.html

Page 14 of 52

According to Paul Gerrish, President at Rochester Electronics, the

company has acquired all of both company’s remaining finished

devices and wafer/die as well as intellectual property in order to

manufacture the exact same device and provide a reliable

continuing source of the devices for systems that continue to use

these semiconductors.

He said the Freescale 68020 processor is available now, with the

full military version of the 68020 in production by the first quarter of

2015. The 68020 processor was sampled in 2014 and will ramp up

production in the first quarter of 2015.

Gerrish said plans are in the works for the rest of the 8-bit NMOS

family of products featuring the 6821, 6840, and 6850 in addition to

the 6809. In addition to these products, the 68HC000 family and

the 68882 are also in development. Also, other Freescale

microcontrollers, such as the 68HC05 and 68HC11, are scheduled

for development in 2015 he said.

"Intel products such as the 80C186EA, EB, EC, XL, and the

80C188EA, EB, EC and XL are all into fabrication now," he

said. "The EB is currently ready for qualification. Also in the

development pipeline for 2015 are the Intel 8X196KB, KC,

and KD microcontrollers."

Thanks to Detlef Obermann, I have been able to make available a

number of older games sourced from German QL PD disks. The

titles include Super Star Trek, Starport, Space Pods, Q-Slot, QL-

Zeitfalle (Time Event), Rescue Of Horan, Fred (Poker, Black Jack

and High Low), Gambler (Backgammon, Checkers, Nine Men's

Morris) and German version of Grey Wolf (English language

 Page 15 of 52

version available from RWAP Software) and Final Conflict.

Get all these free of charge from the Games page on my website

at http://www.dilwyn.me.uk/games/index.html

Also rescued is a program called Graf3D, which renders your

Abacus _exp files into 3D graphs. By Hans-Gerd Peerenboom

1990, it comes with a German _doc file. It’s a mere 30KB

download from http://www.dilwyn.me.uk/graphics/index.html

T o celebrate our QUANTA subgroup

when it was 21 years old we decided

to try and have a project. We settled on trying to write a couple of

games for a QL that would work on an unexpanded system, in

SuperBASIC and if possible then try to change these to run under

the pointer environment.

Part of the idea was we would just have fun trying to get something

working on screen.

The first was a version of 2048. This is a very simple sliding puzzle

on a 4x4 grid where your only options are the arrow keys and

everything slides in that direction. We start with just two squares

filled with a number (either 2 or rarely 4). Each slide causes

another number to appear in one of the free grid locations. If two of

the squares are the same number, when they slide and hit one

http://www.dilwyn.me.uk/games/index.html
http://www.dilwyn.me.uk/graphics/index.html

 Page 16 of 52

 Page 17 of 52

another, they combine to remove one square from the grid and the

remainder doubles in value.

The game is usually found online to play at:

http://gabrielecirulli.github.io/2048/

For a SuperBASIC program we can split this program down into a

few procedures.

For our main game play we will have a matrix 4x7. Knowing that we

count from zero we have the line

300 DIM a(3,6)

Why 7 when we only have a 4x4 grid? Let us build up the routine to

find out. To handle the movement we actually only consider sliding

everything to the left. If we have pressed the up key we could either

work out how to slide everything up or we could rotate our whole

grid once counter-clockwise, do the left slide and then rotate back.

Actually as we will build a routine to rotate counter-clockwise, we

could just rotate another three times counter-clockwise rather than

once clockwise.

This way a right key press means we rotate twice, slide to the left

and then rotate twice again and finally a down key means we rotate

three times, slide and then rotate a final time. That means we only

need to write one set of procedures to handle the movement, one to

rotate the matrix and call this the correct number of times before we

slide and after depending on the key press.

Breaking down the movement a little further we need to slide the

squares on each row to the left if there are any blank squares. We

then check to see if two are the same and if so we combine and

http://gabrielecirulli.github.io/2048/

Page 18 of 52

finally slide again just in case this has produced a hole.

The worst case is when we have Space 2 2 2.

The first slide gives us 2 2 2 space

The add now give us space 4 2 space

A final slide gives 4 2 space space

We could have a counter that for each space that we have slipped

over we add another space at the end, but a simpler way is to have

a matrix that is seven cells long where the final three are always

spaces.

In our slip routine we will work through each row of our matrix in turn

so we use a FOR NEXT loop

720 DEFine PROCedure slip

730 FOR b=0 TO 3

...

870 NEXT b

880 END DEFine

Remembering that we always count from zero. Inside this loop we

will next work through each cell column in turn to check if it is

empty so we have another FOR NEXT loop. We only need to do

this three times as if the last cell is a space it does not matter.

720 DEFine PROCedure slip

730 FOR b=0 TO 3 : REMark Work through the ROWS

740 FOR c=0 TO 2 : REMark Work through the

 Page 19 of 52

COLUMNS

...

860 NEXT c

870 NEXT b

880 END DEFine

We will test to see if the cell is empty

760 IF a(b,c)=0 THEN LET s=1

If it is empty we will move everything in the next columns down

one.

770 IF s=1 THEN LET a(b,c)=a(b,c+1)

780 IF s=1 THEN LET a(b,c+1)=a(b,c+2)

790 IF s=1 THEN LET a(b,c+2)=a(b,c+3)

800 IF s=1 THEN LET a(b,c+3)=a(b,c+4)

That just leaves us to note if we did have a number in any of the

cells we will want to add a new number randomly into the grid

later. So we test if we had an empty cell (S=1) and something

greater than 0 in one of the other cells. If this is true we just set a

counter n to 1 for later.

810 IF s=1 AND a(b,c)>0 THEN LET n=1

820 IF s=1 AND a(b,c+1)>0 THEN LET n=1

830 IF s=1 AND a(b,c+2)>0 THEN LET n=1

There is the case where we had space, space, space, number.

Here we actually need to test the first space more than once so I

Page 20 of 52

put in another loop to do this test three times.

750 FOR e=0 TO 2 : REMark Work through in case we

have up to three spaces before a number

...

850 NEXT e

Our whole routine is now

720 DEFine PROCedure slip

730 FOR b=0 TO 3 : REMark Work through the ROWS

740 FOR c=0 TO 2 : REMark Work through the

COLUMNS

750 FOR e=0 TO 2 : REMark Work through in case we

have up to three spaces before a number

760 IF a(b,c)=0 THEN LET s=1

770 IF s=1 THEN LET a(b,c)=a(b,c+1)

780 IF s=1 THEN LET a(b,c+1)=a(b,c+2)

790 IF s=1 THEN LET a(b,c+2)=a(b,c+3)

800 IF s=1 THEN LET a(b,c+3)=a(b,c+4)

810 IF s=1 AND a(b,c)>0 THEN LET n=1

820 IF s=1 AND a(b,c+1)>0 THEN LET n=1

830 IF s=1 AND a(b,c+2)>0 THEN LET n=1

840 LET s=0

850 NEXT e

860 NEXT c

870 NEXT b

 Page 21 of 52

880 END DEFine

Note in line 800 we have a C+4 and with the loop at line 740, C

could be 2 so the maximum value of cells across would be 2+4=6

but as we start counting from 0 that is the seventh cell and the

reason why we have a 4x7 matrix.

Let us move straight on to the add procedure. This is where we

have slipped the row to the left and now two cells are the same.

These should combine. Again we will work through each row in

turn so we have a FOR NEXT loop

890 DEFine PROCedure add

900 FOR b=0 TO 3 : REMark Work through the ROWS

...

990 NEXT b

1000 END DEFine

We want to test the cells on our row and we need to start with the

first three cells and compare to the next cell

910 FOR c=0 TO 2 : REMark Test each of the first three cells to

the next

...

980 NEXT c

We test to see if they are the same and if so we set a counter

running (g=1). If the counter is true we make our cell become a

space and double the next cell (Lines 930 and 940). We also

advance our counter an extra jump at line 960 so in the case

where we have three cells the same we do not add all of them.

Should we have all four cells the same this leads us to have

 Page 22 of 52

 Page 23 of 52

space, doubled number, space, doubled number.

Line 950 adds our new number to the score total

920 IF a(b,c)=a(b,c+1) THEN LET g=1 : REMark Test

if the cells are the same

930 IF g=1 THEN LET a(b,c)=0

940 IF g=1 THEN LET a(b,c+1)=2*a(b,c+1) : REMark

Double the cell contents

950 IF g=1 THEN LET q=q+a(b,c+1) : REMark We let

a score Q increase

960 IF g=1 THEN LET c=c+1 : REMark Jump a cell if

we have just added two

970 LET g=0

So our finished routine is

890 DEFine PROCedure add

900 FOR b=0 TO 3

910 FOR c=0 TO 2

920 IF a(b,c)=a(b,c+1) THEN LET g=1

930 IF g=1 THEN LET a(b,c)=0

940 IF g=1 THEN LET a(b,c+1)=2*a(b,c+1)

950 IF g=1 THEN LET q=q+a(b,c+1)

960 IF g=1 THEN LET c=c+1

970 LET g=0

980 NEXT c

990 NEXT b

Page 24 of 52

1000 END DEFine

Our next routine is the one where we rotate our matrix. We use a

second matrix to temporary hold our data and so we loop through

each row and each column and write this to our new matrix.

1010 DEFine PROCedure transform

1020 FOR b=0 TO 3

1030 FOR c=0 TO 3

1040 LET d(b,c)=a(b,c) : REMark Copy the matrix

into a dummy holding one

1050 NEXT c

1060 NEXT b

...

1120 END DEFine

We then work through the new matrix and write back to our original

matrix but rotated 90 degrees

1070 FOR b=0 TO 3

1080 FOR c=0 TO 3

1090 LET a(b,c)=d(c,3-b) : REMark This time we

have swapped b and c and count backwards

1100 NEXT c

1110 NEXT b

Our next procedure is the largest and is used to insert a new

number into an empty cell. We need to start off by counting the

 Page 25 of 52

number of empty cells and holding that value in variable z.

1130 DEFine PROCedure inset

1140 FOR b=0 TO 3 : REMark Work through the ROWS

1150 FOR c=0 TO 3 : REMark Work through the

COLUMNS

1160 IF a(b,c)=0 THEN LET z=z+1 : REMark Increase

the number of empty cells

1170 NEXT c

1180 NEXT b

...

1330 END DEFine

We now use this total of empty cells to pick one at random

1190 LET p=INT(RND(1,z))

And now we find that empty cell again and put a number 2 in it.

1200 FOR b=0 TO 3

1210 FOR c=0 TO 3

1220 IF a(b,c)=0 THEN LET l=l+1

1230 IF l=p AND a(b,c)=0 THEN LET f=1

1240 IF f=1 THEN LET a(b,c)=2

1260 LET f=0

1270 NEXT c

1280 NEXT b

Rarely we need to change this to a 4 rather than a 2. We will

choose to insert a value of 4 for 20 per cent of the time

Page 26 of 52

1250 IF f=1 AND INT(RND(1,10))>8 THEN LET a(b,c)

=4

In the case where there had only been one single space which we

have filled we run another procedure to do a final check to see if

the game has ended and also reset our count of spaces, both z

and l (which in hindsight we could have used the same variable as

it is just a count) and w which we use in our end test to indicate the

end of the game.

1290 IF z=1 THEN endcheck

1300 LET l=0 : REMark The number of empty cells

1310 LET z=0

1320 LET w=0

1330 END DEFine

For the endcheck procedure, we only use this test when we have

filled all the cells, so we are just testing to see if we still have two

cells next to each other holding the same value. If they do we

could slide and combine, but if every adjacent cell is different then

the game is over.

630 DEFine PROCedure endcheck

640 FOR b=0 TO 3 : REMark Work through the ROWS

650 FOR c=0 TO 2 : REMark Check the first three

cells with the next cell

660 IF a(b,c)=a(b,c+1) THEN LET w=1 : REMark Work

across the cells

670 IF a(c,b)=a(c+1,b) THEN LET w=1 : REMark Work

 Page 27 of 52

down the cells

680 NEXT c

690 NEXT b

700 IF w=0 THEN PRINT "YOU LOSE":STOP

710 END DEFine

Line 660 tests within the row while line 670 tests columns. If they

are the same w=1 and so we do not lose and come out of the

procedure. If we have not found two adjacent cells the same we

end the routine. In hindsight we should have had

705 LET w=0

rather than line 1320 to keep the variable within its routine.

We have moved everything around so we need to draw all this on

the screen. We start by clearing the screen and then stepping

through the matrix to print the value on the screen. Rather than

have the screen filled with 0s we replace these with dashes. We

multiply the column position by 5 so that once we are beyond single

digit values in our cell it does not overwrite other cells and spaces

then out nicely. Should anyone get to a cell with a value of 16384

we will need to rewrite with a column multiplier greater than 5

1340 DEFine PROCedure drawscreen

1350 CLS

1360 FOR b=0 TO 3

1370 FOR c=0 TO 3

1380 AT b,c*5:PRINT a(b,c)

1390 IF a(b,c)=0 THEN AT b,c*5:PRINT "-"

Page 28 of 52

1400 NEXT c

1410 NEXT b

1420 AT 5,0:PRINT "score=";q

1430 END DEFine

That leaves us needing three more sections. Our keyboard input,

our initialisation of variables and our main program loop. Our next

procedure that we will look at is for keyboard input. We need to

detect the four cursor keys plus the Q key so we can Quit the

game if we need to.

530 DEFine PROCedure keys

540 REPeat wait

550 LET y=CODE(INKEY$)

560 IF y=113 THEN EXIT wait : REMark Q

570 IF y=192 THEN EXIT wait : REMark LEFT

580 IF y=200 THEN EXIT wait : REMark RIGHT

590 IF y=208 THEN EXIT wait : REMark UP

600 IF y=216 THEN EXIT wait : REMark DOWN

610 END REPeat wait

620 END DEFine

When the procedure keys is called it enters a little loop that only

exits if one of our chosen keys is selected. We have used the y

variable in this case so somewhere in our initiation procedure to

set variables we will give this an initial value.

Now we have y to be equal to the code of our keypress (The codes

of each key can be found in the QL manual Concepts section

 Page 29 of 52

which is available online at http://www.dilwyn.me.uk/docs/ebooks/

olqlug/index.htm where 208 should be labelled Cursor UP).

Part of the main program loop deals with calling each routine.

20 REPeat main

30 drawscreen

40 keys

50 IF y=192 THEN LET r=0

60 IF y=192 THEN LET m=0

70 IF y=200 THEN LET r=2

80 IF y=200 THEN LET m=2

90 IF y=208 THEN LET r=1

100 IF y=208 THEN LET m=3

110 IF y=216 THEN LET r=3

120 IF y=216 THEN LET m=1

130 IF y=113 THEN STOP

140 FOR j=0 TO 3

150 IF r>0 THEN transform

160 LET r=r-1

170 NEXT j

180 slip

190 add

200 slip

210 IF n=1 THEN inset

220 LET n=0

230 FOR k=0 TO 3

240 IF m>0 THEN transform

Page 30 of 52

250 LET m=m-1

260 NEXT k

270 END REPeat main

Lines 50 to 120 set two variables depending on which arrow key is

pressed. The variable r is the number of transforms we need to do

to the matrix before we start to slip and m is the number after to

rotate the matrix back to where it was. We could have removed all

the lines that set m and added a single line LET m=4-r

Line 10 just calls a procedure to initialise all the variables

10 initial

That leaves our final procedure to ensure all variables have an

initial value.

280 DEFine PROCedure initial

290 RANDOMISE

300 DIM a(3,6)

310 DIM d(3,6)

320 LET f=0

330 LET g=0

340 LET l=0

350 LET m=0

360 LET n=0

370 LET p=0

380 LET q=0

390 LET r=0

400 LET s=0

 Page 31 of 52

410 LET w=0

420 LET y=0

430 LET z=0

440 FOR b=0 TO 3

450 FOR c=0 TO 6

460 LET a(b,c)=0 : REMark initialise the matrix

to all zeros

470 LET d(b,c)=0 : REMark initialise the

temporary matrix to all zeros

480 NEXT c

490 NEXT b

500 inset

510 inset

520 END DEFine

Lines 440 to 490 just fill the matrices with 0 as a value.

The two last lines 500 and 510 run the procedure to insert the two

opening numbers into the grid.

I would like to be able to say that it took under thirty minutes to

program but it took much longer as I had to look up some

commands in the manual. Notably RND and the AT command for

printing text at a specific location.

Some will have noticed some wasted parts such as

310 DIM d(3,6)

We only ever use a 4x4 grid for d to hold the temporary grid data

while rotating the matrix. However, by keeping it the same size as

With FTC (Fleet Tactical

Command) having been

found, I’m now trying to

track down FTC II by Diren

which is currently missing

in action. I’m also after

Top Team by Arunsoft

which was a football man-

agement game. If you can

help please contact Peter

at:

peetvanpeebles@yahoo.co.uk

Three s pace s arou nd a pa ge

or more in s ize (e ither b la nk

or bordere d) for keen a ma-

teur ar t ic les (MUST BE

SEEN), three a va ilab le are

Co mments, Pr ogra mming,

Rev iews. Of fers in ex cess of

100 words to the Edit or

If you would like to place a small ad then go to page 2

for full details of how to go about it, options are for

QUANTA members as well as non-QUANTA members.

£££ SPARE-TIME?
Earn yourself lots of grati-

tude with a certificate of

thanks by contributing

something to the magazine.

We can’t pay you £££s or

££s or even £ but what you

will be doing will be reward-

ing in itself and you get

your name in typeset style

lights (without the lights bit).

Interested?, then contact

the editor of the magazine

via the contact page inside

the front cover. Not inter-

ested?, then contact the

editor of the magazine via

the contact page inside the

front cover. We will be glad

to hear from you.

LOST ###
The abili ty to do something

posi tive, then submit

something the editor, you

know it makes sense.

!!!Worried???
Don’t worry about your spelling or

grammar not being up to scratch,

that is something we can correct

or leave as necessary, the Edi-

tor's decision is final. Why not

write a review, A review of a

piece of hardware you have re-

cently seen, obtained or bought

that is related or used with the

Sinclair QL. A review of a piece

of Software you have bought or

downloaded legally from a web-

site that doesn't stick a virus on

you system. Reviews of any other

media such as books, magazines

or even leaflets that other people

may appreciate. Contact Mr

Privett for details on how you can

overcome your worry.

SHEDS SHEDS SHEDS
Shed loads of space for you to write or submit that

SuperBASIC listing for the magazine. Short Listings

- any number of lines really, from just a few to a

couple of pages, single or multiple procedures and

functions. As long as you have written to either

solve or explore a programming problem. Or even

just for a bit of experimental fun. Long listings? No

program is too big, no language too strange, wheth-

er its just concepts, SuperBASIC, block diagrams,

Boolean logic, assembler, mnemonics (that's one

for you George), C# C++ C- - or just plain C, Pas-

cal, Fortran or even S*BASIC, anything about eve-

rything would be appreciated. What if you don’t

know if your program listing is too long to be short

or too short to be long? NO WORRIES, we accept

medium listings too throughout the year so get writ-

ing NOW!

Contact us in the usual way, so contact us NOW!

Page 32 of 52

mailto:peetvanpeebles@yahoo.co.uk

 Page 33 of 52

variable a we can use the same FOR NEXT loops at 440 and 450

to initially fill them with zero values.

We separated out each variable to a separate line and could have

easily combined lines 320 to 430 into just one multi-statement line.

The thinking behind this was portability. By altering the drawscreen

procedure and lines 1190 and 1250 which have the RND

commands we were able to quickly port to other old machines

such as the Mattel Aquarius. Most early computers do not seem to

have procedures built into their BASIC languages but we can

replace these by calling them with GOSUB and having a RETURN

at the end of each.

By keeping to simple procedures we also hoped to reuse them in

other games during the coming months.

For the next step I handed over the code to other members of our

subgroup who took the simple game and turned it into something

worth playing by changing it to be a Pointer Environment game.

10 initial

20 REPeat main

30 drawscreen

40 keys

50 IF y=192 THEN LET r=0

60 IF y=192 THEN LET m=0

70 IF y=200 THEN LET r=2

80 IF y=200 THEN LET m=2

90 IF y=208 THEN LET r=1

100 IF y=208 THEN LET m=3

Page 34 of 52

110 IF y=216 THEN LET r=3

120 IF y=216 THEN LET m=1

130 IF y=113 THEN STOP

140 FOR j=0 TO 3

150 IF r>0 THEN transform

160 LET r=r-1

170 NEXT j

180 slip

190 add

200 slip

210 IF n=1 THEN inset

220 LET n=0

230 FOR k=0 TO 3

240 IF m>0 THEN transform

250 LET m=m-1

260 NEXT k

270 END REPeat main

280 DEFine PROCedure initial

290 RANDOMISE

300 DIM a(3,6)

310 DIM d(3,6)

320 LET f=0

330 LET g=0

340 LET l=0

350 LET m=0

360 LET n=0

 Page 35 of 52

370 LET p=0

380 LET q=0

390 LET r=0

400 LET s=0

410 LET w=0

420 LET y=0

430 LET z=0

440 FOR b=0 TO 3

450 FOR c=0 TO 6

460 LET a(b,c)=0

470 LET d(b,c)=0

480 NEXT c

490 NEXT b

500 inset

510 inset

520 END DEFine

530 DEFine PROCedure keys

540 REPeat wait

550 LET y=CODE(INKEY$)

560 IF y=113 THEN EXIT wait

570 IF y=192 THEN EXIT wait

580 IF y=200 THEN EXIT wait

590 IF y=208 THEN EXIT wait

600 IF y=216 THEN EXIT wait

610 END REPeat wait

620 END DEFine

Page 36 of 52

630 DEFine PROCedure endcheck

640 FOR b=0 TO 3

650 FOR c=0 TO 2

660 IF a(b,c)=a(b,c+1) THEN LET w=1

670 IF a(c,b)=a(c+1,b) THEN LET w=1

680 NEXT c

690 NEXT b

700 IF w=0 THEN PRINT "YOU LOSE":STOP

710 END DEFine

720 DEFine PROCedure slip

730 FOR b=0 TO 3

740 FOR c=0 TO 2

750 FOR e=0 TO 2

760 IF a(b,c)=0 THEN LET s=1

770 IF s=1 THEN LET a(b,c)=a(b,c+1)

780 IF s=1 THEN LET a(b,c+1)=a(b,c+2)

790 IF s=1 THEN LET a(b,c+2)=a(b,c+3)

800 IF s=1 THEN LET a(b,c+3)=a(b,c+4)

810 IF s=1 AND a(b,c)>0 THEN LET n=1

820 IF s=1 AND a(b,c+1)>0 THEN LET n=1

830 IF s=1 AND a(b,c+2)>0 THEN LET n=1

840 LET s=0

850 NEXT e

860 NEXT c

870 NEXT b

880 END DEFine

 Page 37 of 52

890 DEFine PROCedure add

900 FOR b=0 TO 3

910 FOR c=0 TO 2

920 IF a(b,c)=a(b,c+1) THEN LET g=1

930 IF g=1 THEN LET a(b,c)=0

940 IF g=1 THEN LET a(b,c+1)=2*a(b,c+1)

950 IF g=1 THEN LET q=q+a(b,c+1)

960 IF g=1 THEN LET c=c+1

970 LET g=0

980 NEXT c

990 NEXT b

1000 END DEFine

1010 DEFine PROCedure transform

1020 FOR b=0 TO 3

1030 FOR c=0 TO 3

1040 LET d(b,c)=a(b,c)

1050 NEXT c

1060 NEXT b

1070 FOR b=0 TO 3

1080 FOR c=0 TO 3

1090 LET a(b,c)=d(c,3-b)

1100 NEXT c

1110 NEXT b

1120 END DEFine

1130 DEFine PROCedure inset

1140 FOR b=0 TO 3

Page 38 of 52

1150 FOR c=0 TO 3

1160 IF a(b,c)=0 THEN LET z=z+1

1170 NEXT c

1180 NEXT b

1190 LET p=INT(RND(1,z))

1200 FOR b=0 TO 3

1210 FOR c=0 TO 3

1220 IF a(b,c)=0 THEN LET l=l+1

1230 IF l=p AND a(b,c)=0 THEN LET f=1

1240 IF f=1 THEN LET a(b,c)=2

1250 IF f=1 AND INT(RND(1,10))>8 THEN LET a(b,c)

=4

1260 LET f=0

1270 NEXT c

1280 NEXT b

1290 IF z=1 THEN endcheck

1300 LET l=0

1310 LET z=0

1320 LET w=0

1330 END DEFine

1340 DEFine PROCedure drawscreen

1350 CLS

1360 FOR b=0 TO 3

1370 FOR c=0 TO 3

1380 AT b,c*5:PRINT a(b,c)

1390 IF a(b,c)=0 THEN AT b,c*5:PRINT "-"

 Page 39 of 52

1400 NEXT c

1410 NEXT b

1420 AT 5,0:PRINT "score=";q

1430 END DEFine

I am reluctant to produce articles

which contain coding since the

resulting copy in QUANTA appears distorted. The two defects

seem to result from word wrap when a line is too long for the

chosen font and a peculiarity in the appearance of that font in the

eMAG version.

I was surprised recently when, at a recent SQLUG meeting I

compared a member’s printed version with my eMAG version. The

spacing of the letters, though acceptable in the printed version

were distorted in the eMAG.

(Firstly apologies from me as Editor—This has caused a number of

headaches in the past few issues of correctly placing characters

where they should be in order to get listings to not only look right

aesthetically but also correctly. The issues lie from a mix of a

number of reasons, firstly font, font size, line spacing and number

of characters per line. Secondly the algorithm used by the

publisher program that squashes the spacing between characters

Page 40 of 52

in order to fit within a space (it is not consistent with fixed

proportion text used in listings).

Thirdly text codes used in QL systems and Windows systems

behave differently CR, LF, soft returns and hard returns do not do

as you would logically expect. Fourthly, the resolution between

the printed magazine and the e-magazines are quite different and

this affects the quality of both the text and the space between the

text. Finally the readability factor, our readership need to be able

see listings in order to understand them and copy them in to the

QL system.

After discussing some of these with George, we have

experimented with a number of these issues and we hope to have

an improved listing especially for Assembler code in the next

 Page 41 of 52

issue, watch this space—Ed.)

N.B.

If you have any comments on this point or any other issue about

the magazine then please write/email to the editor , details on

page 2 of this magazine - Ed.

M eetings are held on the last

Thursday of the month

(except August & December) from 7.00pm to 11.00pm. All are

welcome to our meetings. The venue is usually at John Gilpin’s

home 181, Urmston Lane, Stretford, M/cr M32 9EH (near Junction

7 on M60 motorway) but currently at Alison Southern’s home, 40,

Distaff Road, Poynton, Cheshire, SK12 1HN. Contact us before

the meeting – phone numbers inside front cover.

During 2016 there will be additional Sunday workshop meetings at

181, Urmston Lane on the following dates:

February 7th;

April 24th;

June 26th

Oct 30th

from 1.00pm to 7.00pm.

NEMQLUG - NORTH EAST MANCHESTER QL USER GROUP

Page 42 of 52

I n what was to be the last part of

the SpriteDesigner we have nearly

the rest of the SuperBASIC listing. The last part, should with any

luck be in the next issue. It is littered with REM statements which

hopefully explain and make sense of what is going on in each

routine.

2120 REMark *******************************

2130 REMark The C key pressed invoking

2140 REMark the routine for changing colour

2150 REMark *******************************

2160 :

2170 IF KEYROW(2)=8

2180 ToColour fa

2190 Arrows

2200 END IF

2210 :

2220 REMark *******************************

2230 REMark The R key pressed invoking

2240 REMark the routine for Random Fill

2250 REMark *******************************

2260 :

2270 IF KEYROW(5)=16

 Page 43 of 52

2280 ToRandom

2290 Arrows

2300 END IF

2310 :

2320 IF t=0 AND Ta=0 : GO TO 1660

2330 :

2340 REMark *************************

2350 REMark No key pressed from row 1

2360 REMark *************************

2370 :

2380 IF KEYROW(1)>0 : GO TO 2380

2390 :

2400 REMark **************************

2410 REMark Checks if SPACEBAR pressed

2420 REMark and toggles status of Pen

2430 REMark **************************

2440 :

2450 IF t=64 THEN

2460 pen = NOT(pen) : Pend

2470 END IF

2480 :

2490 REMark ***********************

2500 REMark ENTER Key pressed and

2510 REMark sets a pixel of the

2520 REMark current selected colour

2530 REMark ***********************

Page 44 of 52

2540 :

2550 IF t=1

2560 OVER #3,0 : STRIP #3,fa : INK #3,fa : AT

#3,y,x : PRINT #3,"w";

2570 INK #3,7 : OVER #3,-1 : p(x,y)=fa : BEEP

20,2

2580 BLOCK#1, Ste,1,(x+(8/Ste))

*Ste,y+16,fa

2590 END IF

2600 IF t=2 THEN

2610 IF x>0 : x=x-1

2620 IF x<0 : x=xm

2630 END IF

2640 :

2650 REMark *******************************

2660 REMark Cursor movement

2670 REMark *******************************

2680 :

2690 SELect ON t

2700 =4 : IF y>0 : y=y-1

2710 =8 : S : e : STOP :REMark ESC

2720 =16 : IF x<xm+1 : x=x+1

2730 =128 : IF y<15 : y=y+1 :

2740 END SELect

2750 :

2760 IF pen=1 AND x<=xm THEN

 Page 45 of 52

2770 OVER #3,0 : STRIP #3,fa

2780 INK #3,fa : AT #3,y,x

2790 PRINT #3,"w"; : INK #3,7

2800 OVER #3,-1 : p(x,y)=fa

2810 BLOCK#1, Ste,1,(x+(8/Ste))

*Ste,y+16,fa

2820 BEEP 20,2

2830 END IF

2840 :

2850 REMark *************************

2860 REMark *** TAB key pressed ****

2870 REMark *************************

2880 IF Ta=8 THEN

2890 AT 0,0 : PRINT "TAB"

2900 x=xm+1

2910 :

2920 REMark ***********************

2930 REMark *** No key pressed ****

2940 REMark ***********************

2950 IF KEYROW(5)>0 : GO TO 2950

2960 END IF

2970 :

2980 IF x>xm : RETurn

2990 FOR w= 1 TO ti : END FOR w

3000 :

3010 REMark **********************************

Page 46 of 52

3020 REMark *** No key pressed from row 0 ****

3030 REMark **********************************

3040 IF KEYROW(0)>0 : ti=ti-5 : ELSE : ti=50:

END IF

3050 GO TO 1660

3060 END DEFine

3070 :

3080 REMark

3090 REMark # Selecting the sprite character

3100 REMark # and indicate whether selected

3110 REMark # or highlighted as the cursor moves

3120 REMark

3130 :

3140 DEFine PROCedure SELECTing

3150 REMark #######################

3160 REMark very basic key check

3170 REMark #######################

3180 AT 0,0 : PRINT " ";

3190 IF KEYROW(1)>0 : GO TO 3180

3200 IF KEYROW(5)>0 : GO TO 3180

3210 OVER #4,-1

3220 sprx=0 : spry=0 : Ta=0

 Page 47 of 52

3230 bef=4 : DBef : bef=0

3240 PRINT #6,"SELECT SPRITE "; : Arrow

3250 PRINT #6,"TAB ^TAB"

3260 Message

3270 BLOCK #4,48,10,sprx*84,spry*20,7

3280 REPeat stuff

3290 Ta=KEYROW(5): u=KEYROW(7)

3300 t=KEYROW(1)

3310 IF t=0 AND Ta=0 : GO TO 3290

3320 BLOCK #4,48,10,sprx*84,spry*20,7

3330 IF Ta=8 AND u=0 :

sprx=2 :REMark TAB

3340 IF t=4 AND spry>0 : spry=spry-1

3350 IF t=128 AND spry<9 : spry=spry+1

3360 IF t=2 : sprx=sprx-1

3370 IF t=16 : sprx=sprx+1

3380 IF sprx=2 OR sprx=-1 : EXIT

stuff :REMark

3390 IF Ta=8 AND u=1:PleaseWait: EXIT

stuff :REMark ^TAB

3400 IF t=1

3410 BLOCK #4,48,10,(sprn DIV 10)*84,(sprn

MOD 10)*20,4

3420 BLOCK #4,48,10,sprx*84,spry*20,4 :

sprn=sprx*10+spry

3430 END IF : REMark *^* Added during

reformat

Page 48 of 52

3440 Message

3450 BLOCK #4,48,10,sprx*84,spry*20,7

3460 IF KEYROW(1)>0 : GO TO 3460

3470 END REPeat stuff

3480 END DEFine

3490 :

3500 REMark

#######################################

3510 REMark ## ToFill, fills the editing area

3520 REMark ## with the selected colour, you get

3530 REMark ## the option to cancel

3540 REMark

#######################################

3550 :

3560 DEFine PROCedure ToFill (colf)

3570 LOCal x, y, t

3580 Mess "FILL WITH COLOUR "&colf

3590 BLOCK #6,508,10,0,0,3

3600 t=Cur_Pressed("12")

3610 IF t=1 : RETurn

3620 IF t=2

3630 PleaseWait

3640 OVER #3,0 : STRIP #3,colf : INK #3,colf

3650 FOR x=0 TO xm

 Page 49 of 52

3660 FOR y=0 TO 15

3670 AT #3,y,x : PRINT #3,"w"

3680 p(x,y)=colf

3690 BLOCK#1, Ste,1,(x+(8/Ste))

*Ste,y+16,colf

3700 END FOR y

3710 END FOR x

3720 INK #3,7 : OVER #3,-1

3730 Completed

3740 PAUSE 50

3750 END IF

3760 END DEFine

3770 :

3780 REMark *****************************

3790 REMark changes one colour to another

3800 REMark *****************************

3810 :

3820 DEFine PROCedure ToColour (fa)

3830 LOCal t

3840 Mess "CHANGE COLOUR "&fa

3850 BLOCK #6,508,10,0,0,3

3860 t=Cur_Pressed("12")

3870 IF t = 1 : RETurn

3880 IF t = 2 :

3890 IF mo=4 THEN

3900 Messy "To Colour 0, 2, 4, 7"

Page 50 of 52

3910 ELSE

3920 Messy "To Colour 0, 1, 2, 3, 4, 5, 6,

7"

3930 END IF

3940 Change_Colour fa, Key_Pressed

("01234567")

3950 Update_Matrix

3960 END IF

3970 END DEFine

3980 :

3990 REMark ************************

4000 REMark Colour change routine

4010 REMark CFC - Change From Colour

4020 REMark CTC - Change To Colour

4030 REMark ************************

4040 :

4050 DEFine PROCedure Change_Colour (CFC, CTC)

4060 LOCal x, y

4070 FOR x = 0 TO xm

4080 FOR y = 0 TO 15

4090 IF p(x,y) = CFC THEN p(x,y) = CTC

4100 END FOR y

4110 END FOR x

4120 END DEFine

4130 :

The final part of the program will be in the next issue (hopefully)

COPY DATE for APR/MAY 2016 ISSUE

5th APRIL 2016

Please ensure that your copy reaches the editor on or before that

date. Copy on Paper, Magnetic Media or by Email. Text & listings

are preferred in ASCII format as text files, Microsoft™ Word

Documents or in QL Quill formatted files. All graphic submissions

in as high a resolution as possible, preferably in PNG format, other

forms of submission can also be accepted, please contact the

Editor for details.

All Contributions are welcome

Copy by Email to editor@quanta.org.uk

Copy by Snail Mail, see page 2 for address

This magazine and all the articles etc. within it are copyright © QUANTA

2015 unless otherwise stated. Reproduction and redistribution in any

form is not allowed without the express written permission of the

publisher. All copyrights and trademarks are hereby acknowledged.

 Page 51 of 52

mailto:editor@quanta.org.uk?subject=Copy%20for%20the%20next%20issue%20of%20the%20QUANTA%20Magazine

 Page 52 of 52

